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SUMMARY 
A comparison is made between various methods for the 

calculation of the pressure distribution on an elliptic cone in 
supersonic flow. In  particular, a criterion first put forward by 
Van Dyke (1956) is reconsidered. The paper is presented in 
two parts under separate authorship, taking the form of a discussion 
of some controversial aspects of this subject. 

PART I. (By R. V.-L.j 
In  a recent paper Van Dyke (1956) derived the second-order slender-body 

solution for an unyawed elliptic cone in supersonic flow. Considering his 
results to be exact, he used them as a criterion for comparing various 
approximations in compressible flow theory. Among these the method of 
linearized characteristics (Ferri 195 1) was discussed, in particular, its 
application to the analysis of the flow field about non-circular cones. This 
method in general proceeds by linearizing the departure between the flow 
field of interest and some known non-uniform flow close to the actual one; 
along these lines Ferri treated the particular problem mentioned above 
by superposing perturbations on the axisymmetric solution, the disturbance 
velocity components being expanded in Fourier series in the polar angle 0 
up to the tenth term. With this approach the entire flow field and the shock 
wave can be determined over a wide range of Mach numbers, in contrast 
to orthodox methods of linearization. 

Van Dyke based his appraisal of Ferri's approximation on the two 
following numerical comparisons instituted for an elliptic cone of 3 : 1 axis 
ratio and area equivalent to a 10" circular cone, at M = 42: 

(1) The law expressing the slender-body pressure distribution was 
expanded in a Fourier series, and the error introduced by 
termination of this series at cos 108 was evaluated. 

(2) An approximation to the second-order slender-body solution was 
developed following Ferri's procedure of expanding the velocity 
components in a Fourier series in 0, while linearizing with respect 
to deviation of the cross-section from circular, and calculating 
pressure coefficients from the full relation ; the resulting pressures 
were' compared with the exact values. 
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Van Dyke suggested that the large discrepancies between his complete and 
approximate results gave a measure of the errors to be encountered in 
Ferri's method, supposedly due to termination of the series at cosl00 
and to linearization of the boundary conditions. Since good accuracy is 
to be expected from the second-order slender-body theory for the example 
in question, and since Ferri (1951) reported good agreement with 
experiments for a similar case, it seemed interesting to ascertain the origin 
of these discrepancies. The matter has been the subject of private 
communications with Dr Van Dyke, who has provided many interesting 
comments and much information ; these are gratefully acknowledged. 
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Figure 1 .  Comparison between various approximations to the pressure 
distribution around an elliptic cone. 

I t  is shown in the present note that satisfactory results can be obtained 
from the method of linearized characteristics, even when only linear terms 
are retained in the boundary conditions, provided that an area rule 
requirement is satisf ed. The pressure distribution predicted by this 
procedure for the aforementioned elliptic cone at M = d 2  compares 
favourably with the second-order results (see figure 1) ; moreover, the 
experimental data presented in figure 3 of Van Dyke's paper indicate that 
the actual values in the region of small B (tan 0 = b/a tan 7 in the notation 
of his paper) should fall between the two predictions. Thus both analyses 
exhibit approximately the same accuracy at the surface of the body, even 
though the particular example (a slender body at fairly low Mach number) 
represents an unfavourable test for Ferri's method. It is also pertinent to 
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observe that Van Dyke's solution is not uniformly valid throughout the 
flow field and fails at the shock, where conversely the accuracy of the 
linearized characteristics method is best since the perturbations there are 
smallest. 

The area-rule requirement for the expansion of the boundary conditions 
is justified by the following considerations. If, following Ferri, the shape 
of the body cross-section is expressed in polar coordinates (i,#,O) as the 
Fourier series a 

$b = $0b + c #nb cos ne (1) 
n = l  

with only linear terms retained in $r8 b ,  and if +Ob refers to the basic circular 
cone, the velocity components at the surface of the actual body are given by. 

vn = 0, I 

In the notation used by Ward (1955) the boundary conditions are 

v, dv 
- = -  or i, 2 dr = ic $ dr = S'(z), 
v2 dz (3 

where v is the distance along the direction normal to the body contour 
in a plane perpendicular to the free-stream direction z, and vy, v, are the 
velocity components in the v-direction and z-direction respectively. 
Within the approximation of the linearized characteristics method, we have 

Substitution of these expressions into (3) yields 

2mtan2$,, = S'(z). 

This result can alternatively be obtained by observing that in a neighbourhood 
O [ Z ~ ~ ~ ]  of the body surface the following quantities are small of the same 
order (the symbol O[ ] indicating order of magnitude, and s entropy) 

If terms 0[&$] are neglected, the equation of motion in spherical 
coordinates reduces to the incompressible form 

aw 
- 0 ,  divv = 2vr+v,cot$+ - + ___ - 2% 

a$ sin$a0 

and the flow in the neighbourhood in question can be defined by a n  
incompressible potential since the entropy is constant on the body and 
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the effect of &/a+ on the velocities can be neglected, being O[+zb]. 
Expansion of this potential in spherical harmonics and subsequent 
application of Gauss's theorem to a control volume delimited by the actual 
body, by the basic axisymmetric body and by two spherical surfaces of 
arbitrary radius leads to the same requirement for the zeroth term as 
quoted above. Therefore, the coefficients of the Fourier series representing 
the cross-section of the body within the approximation of the linearized 
characteristics method should be obtained by an expansion satisfying the 
requirement of equivalent areas. For the particular case of the elliptic 
cone at zero angle of attack, this can be obtained either (i) by determining b 
in the equation 

b'alb) 
[(a/b)2 sin2 0 + cos2 0]1'2 ' $I = tan-l 

so as to satisfy the condition n-tan2$Io, = S (approximation A in figure 1)' 
or (ii) by determining $I from the expansion 

a2b2 a - b  
a2 sina 8 + b2 cos2 6 - tan2+ = 

which, within the linearized approximation, gives (approximation 
figure 1) 

B in 

The expansion used in method (ii) has been suggested in a private 
communication by Van Dyke. 

The poor accuracy exhibited by the results of Van Dyke's linear 
perturbation of a circular cone depended on the use of a direct Fourier 
expansion for the body geometry which yields #ob = 9-27" instead of 
+Ob = 10" ; in the chosen conical reference system, higher-order terms 
in t,h,,,b were thus considered for the- boundary conditions, while the linearized 
approximation was retained for the computation of the velocity components. 
In this connection it is interesting to observe the close agreement over the 
range 20" < 8 < 90" between Van Dyke's approximate results and the 
curve obtained by imposing his boundary conditions in the linearized 
characteristic analysis (curve C in figure 1). The increasing discrepancy 
between the aforesaid curves in the range 0" < 6 < 20" indicates that 
linear perturbations of the basic flow field lead to different accuracy in 
the two cases. This behaviour may in turn be attributed to the fact that 
the basic flow used in the linearized characteristics approach represents 
a uniformly valid solution, in contrast to the basic flow considered in 
Van Dyke's analysis. 

The present example of a linearized characteristics calculation has also. 
been extended to include terms up to cos 188 *. The results, which are 

* Tables of the disturbance velocities up to cos 180 for a basic 10'-cone have 
been computed by the Research Department of the Grumman Aircraft Engineering 
Company. 
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included in figure 1, are practically identical to those obtained by the 
approximation as far as cos106, and thus indicate that the question of 
convergence of the Fourier series in Ferri’s method is related to the problem 
of representing the body cross-section rather than the problem of describing 
the perturbation flow field. It is believed that Van Dyke’s expansion of the 
slender-body pressure distribution to cos 108 afforded a lower accuracy than 
that obtained in the present analysis because the disturbance velocities 
considered in the two cases are of different order of magnitude; indeed, 
the latter expands the differences in velocity components (referred to 
conical coordinates) between the actual and the basic non-linear conical 
flow, while the former involves the changes in velocity from free-stream 
magnitude and direction. 

PART 11. (By M. D. V. D.) 

Professor Vaglio-Laurin makes the interesting suggestion that the range 
of applicability of Ferri’s method may be increased by modifying it in 
accord with the equivalence (or ‘area’) rule due to Oswatitsch (1952). 
The  modification involves the same linearization as Ferri’s original method, 
differing from it only in higher-order terms ; so that a demonstration of its 
superiority cannot be based on the linearized equations. Instead, one must 
compare with a more exact (non-linear) theory or with experiment, both 
of which will be done here. 

First, in keeping with the spirit of my original paper (Van Dyke 1956), 
the second-order slender-body solution derived there has been used as the 
basis for a test of Vaglio-Laurin’s proposal. That  is, the second-order 
slender-body approximation is taken as a model of the full solution, and the 
simplifications of Ferri’s method and Vaglio-Laurin’s modification are 
introduced as additional approximations. The  results are shown in figure 2 
(which is the left half of figure 5 of my previous paper with two added 
curves). Vaglio-Laurin’s approximation A is seen to give a definite 
improvement in the general level of pressure, though the peak is blurred 
(so that at this moderate Mach number simple slender-body theory is more 
accurate, as shown in figure 5 of my previous paper). 

Second, Jorgensen (1957) has recently measured the pressures over 
an elliptic cone close in shape to that just considered. It has the same axis 
ratio of 3 : 1 ; and although its cross-sectional area is that of a 7-76’ rather 
than a 10” circular cone, it was tested at a Mach number of 1.97 rather 
than 1.41, so that the supersonic similarity parameter (the ratio of cone angle 
to free-stream Mach angle) is actually somewhat higher. The  results are 
shown in figure 3. Again the actual pressure peak is seen to be rounded off 
by approximation A. 

Curtailment of the 
Fourier series at cos 1U6 introduces no appreciable error; and 53.5 of my 
previous paper was wrong on this point for just the reason that he suggests. 
Hence my previous assessment of Ferri’s method stands except that the 

Vaglio-Laurin’s last paragraph is quite correct. 
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J* Figure 2. Further comparison between approximations to the pressure 
distribution around an elliptic cone. 
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error is to be attributed almost entirely to non-linear effects rather than 
partly to the curtailment of the series. The method in its original form 
cannot reasonably be applied to cones whose cross-section differs from 
circular by as much as a 3 : 1 ellipse. For the modification suggested by 
Vaglio-Laurin, however, such eccentricity is seen to be perhaps tolerable 
at high supersonic Mach numbers where no more accurate theory exists, 
For less extreme eccentricities Vaglio-Laurin’s method will yield good 
accuracy. 

In view of this conclusion, the numerical results of Ferri, Ness & Kaplita 
(1953) must be regarded as unreliable except for nearly circular bodies. 
For example, the drag of an elliptic cone decreases much less with flattening 
than is suggested there. Indeed, Jorgensen’s measurements at Mach 
numbers of 1.97 and 2-94 show that the decrease in wave drag is so slight 
as to be entirely offset by the increase in skin friction due to greater 
surface area. 
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